Institute of Mineral Research

Life Sciences - Health & Wellness

  • Home
  • Open Access
  • Mineral Elements
  • Conditions A-Z
  • Submissions
  • About Us

Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin

Authors: Yazdankhah S, Rudi K, Bernhoft A

Citation: Microb. Ecol. Health Dis. 2014;25
PMID : 25317117, Journal: Microb. Ecol. Health Dis., 25,
Date created: 2014-10-15

Abstract

Farmed animals such as pig and poultry receive additional Zn and Cu in their diets due to supplementing elements in compound feed as well as medical remedies. Enteral bacteria in farmed animals are shown to develop resistance to trace elements such as Zn and Cu. Resistance to Zn is often linked with resistance to methicillin in staphylococci, and Zn supplementation to animal feed may increase the proportion of multiresistant E. coli in the gut. Resistance to Cu in bacteria, in particular enterococci, is often associated with resistance to antimicrobial drugs like macrolides and glycopeptides (e.g. vancomycin). Such resistant bacteria may be transferred from the food-producing animals to humans (farmers, veterinarians, and consumers). Data on dose-response relation for Zn/Cu exposure and resistance are lacking; however, it seems more likely that a resistance-driven effect occurs at high trace element exposure than at more basal exposure levels. There is also lack of data which could demonstrate whether Zn/Cu-resistant bacteria may acquire antibiotic resistance genes/become antibiotics resistant, or if antibiotics-resistant bacteria are more capable to become Zn/Cu resistant than antibiotics-susceptible bacteria. Further research is needed to elucidate the link between Zn/Cu and antibiotic resistance in bacteria.

Related Articles

  • Zinc is the most important trace element
  • Exacerbation of Insulin Resistance and Hepatic Steatosis Deriving from Zinc Deficiency in Patients with HCV-Related Chronic Liver Disease
  • Copper deficiency anemia morphologically mimicking myelodysplastic syndrome

Filed Under: Journal Publications Tagged With: Copper, Copper deficiency, Zinc

SEARCH

Silicon Biochemistry

Silicon as an Essential Trace Element in Animal Nutrition
Author: Edith Muriel Carlisle
READ FULL ARTICLE HERE (PDF)

Published in 1899

The Physiological Role of Mineral Nutrients

Author: Loew, Oscar, b. 1844 Volume: no.18 Subject: Plant physiology; Plants Assimilation; Minerals Publisher: Washington : G.P.O. Year: 1899 Possible … Read this book online

Most Recent Posts

  • Update on Nutrients Involved in Maintaining Healthy Bone
  • Lithium as a Nutrient
  • Does Potassium Deficiency Contribute to Hypertension in Children and Adolescents?
  • Iodine deficiency: Clinical implications.

View by Category

  • Clinical Trials / Studies
  • Elements
  • Journal Publications
  • Open Access
  • Seawater
  • Elements
  • Open Access
  • Journal Publications
  • Clinical Trials / Studies
About Us
About Open Access
For Authors
Our Contributors and Partners
Contact
Privacy
Terms & Conditions

Copyright ©2014 - 2018 Institute of Mineral Research