Institute of Mineral Research

Life Sciences - Health & Wellness

  • Home
  • Open Access
  • Mineral Elements
  • Conditions A-Z
  • Submissions
  • About Us

Protective effect of magnesium on renal function in STZ-induced diabetic rats

Authors: Parvizi MR, Parviz M, Tavangar SM, Soltani N, Kadkhodaee M, Seifi B, Azizi Y, Keshavarz M

Citation: J Diabetes Metab Disord 2014;13(1):84
PMID : 25197628, Journal: J Diabetes Metab Disord, 13, 1
Date created: 2014-09-08

Abstract

BACKGROUND: Diabetic nephropathy is a serious complication of T1D (type one diabetes mellitus). Persistent hyperglycemia and subsequent hypomagnesemia is believed to develop kidney damage by activation of oxidative stress. We conducted this study to investigate the renoprotective effect of magnesium sulfate (MgSO4) on renal histopathology and oxidative stress in diabetic rats.

METHODS: The study included 70 male rats. The animals were divided into seven groups: control (CRL), control receiving MgSO4 (CRL + Mg1 & CRL + Mg8), diabetic (DM1 & DM8) and diabetic receiving MgSO4 (DM + Mg1 & DM + Mg8). Rats were given 20 mg/kg (i.p) Streptozocin (STZ) for 5 consecutive days in (MLD) multiple low doses to induce T1D. At day 10 treatment groups were received MgSO4 (10 g/l) in drinking water, for 1 or 8 weeks. The blood glucose, BUN and creatinine levels were measured. Renal tissue levels of malondialdehyde (MDA) were measured by thiobarbituric acid (TBA) method to evaluate the oxidative stress. Renal histopathology was done using H & E staining method.

RESULTS: Treatment with MgSO4 significantly decreased the blood glucose in DM + Mg1 and DM + Mg8 groups as compared with DM1 and DM8. Magnesium treatment also decreased serum BUN and tissue level of MDA significantly in both short and long term treatment. The body weight loss and kidney weight to body weight ratio was improved by MgSO4. Histological results showed there were no differences between DM and DM + Mg groups.

CONCLUSION: Our findings showed that diabetic nephropathy is associated with high blood glucose level and oxidative stress (significant increase in MDA level). The renal dysfunction and oxidative stress can be improved by magnesium sulfate administration. It is suggested that protection against development of diabetic nephropathy by MgSO4 treatment involves changes in the blood glucose and oxidative stress.

Related Articles

  • Effects of magnesium supplements on blood pressure
  • Oral magnesium supplementation in type II diabetic patients
  • The impact of magnesium on isometric twitch parameters and resting membrane potential of the skeletal muscle in diabetic rats

Filed Under: Journal Publications Tagged With: Diabetes, Magnesium, renal function

SEARCH

Silicon Biochemistry

Silicon as an Essential Trace Element in Animal Nutrition
Author: Edith Muriel Carlisle
READ FULL ARTICLE HERE (PDF)

Published in 1899

The Physiological Role of Mineral Nutrients

Author: Loew, Oscar, b. 1844 Volume: no.18 Subject: Plant physiology; Plants Assimilation; Minerals Publisher: Washington : G.P.O. Year: 1899 Possible … Read this book online

Most Recent Posts

  • Update on Nutrients Involved in Maintaining Healthy Bone
  • Lithium as a Nutrient
  • Does Potassium Deficiency Contribute to Hypertension in Children and Adolescents?
  • Iodine deficiency: Clinical implications.

View by Category

  • Clinical Trials / Studies
  • Elements
  • Journal Publications
  • Open Access
  • Seawater
  • Elements
  • Open Access
  • Journal Publications
  • Clinical Trials / Studies
About Us
About Open Access
For Authors
Our Contributors and Partners
Contact
Privacy
Terms & Conditions

Copyright ©2014 - 2018 Institute of Mineral Research