Institute of Mineral Research

Life Sciences - Health & Wellness

  • Home
  • Open Access
  • Mineral Elements
  • Conditions A-Z
  • Submissions
  • About Us

Estimation of iodine intake from various urinary iodine measurements in population studies

Authors: Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Andersen S, Rasmussen LB, Ovesen L, Jørgensen T

Citation: Thyroid 2009 Nov;19(11):1281-6
PMID : 19888863, Journal: Thyroid, 19, 11
Date created: 2009-11-05

Abstract

BACKGROUND: Iodine intake is often measured by a surrogate measure, namely urine iodine excretion as almost all ingested iodine is excreted in the urine. However, the methods for urine collection and the reporting of the results vary. These methods, and their advantages and disadvantages, are considered in this article.

SUMMARY: There are two main ways in which urine can be collected for iodine measurement. The first is the collection of urine over a period, usually 24 hours. The second is the collection of a spot urinary sample. Urinary iodine values can be expressed as the content or concentration and reported without modification or as a function of creatinine in the same sample. The 24-hour urine for iodine measurement is often considered as the “reference standard” for giving a precise estimate of the individual iodine excretion and thereby iodine intake. As 24-hour collections are difficult to perform for large number of persons, single spot urinary samples are preferable to the 24-hour urinary collections in population studies. The iodine concentration in urine depends on the intake of both iodine and fluid. This, and the fact that there is a considerable variability in the daily iodine intake, makes the iodine measurement in spot urine samples unreliable for evaluating individuals for iodine deficiency, though they can be used to screen for exposure to large amounts of iodine from sources such as amiodarone and certain radiographic contrast agents. In populations of at least 500 subjects, the median value of spot urinary iodine concentration is a reliable measure of the iodine intake in the population as there is a leveling out of the day-to-day variation in iodine intake and urinary volume. Expressing the urinary iodide concentration as a function of urinary creatinine is useful in correcting for the influence of fluid intake. When doing so, it is recommended to adjust for the age- and sex-specific creatinine excretion in the given population.

CONCLUSION: In studies of iodine intake, the correct choice of the method for collecting urine and the format for expressing the results of urine iodine measurement is essential to avoid misinterpretation of data on the iodine status of a population or individuals.

Related Articles

  • Measurement error corrected sodium and potassium intake estimation using 24-hour urinary excretion
  • Iodine intake as a determinant of thyroid disorders in populations
  • Iodine deficiency

Filed Under: Journal Publications Tagged With: Iodine

SEARCH

Silicon Biochemistry

Silicon as an Essential Trace Element in Animal Nutrition
Author: Edith Muriel Carlisle
READ FULL ARTICLE HERE (PDF)

Published in 1899

The Physiological Role of Mineral Nutrients

Author: Loew, Oscar, b. 1844 Volume: no.18 Subject: Plant physiology; Plants Assimilation; Minerals Publisher: Washington : G.P.O. Year: 1899 Possible … Read this book online

Most Recent Posts

  • Update on Nutrients Involved in Maintaining Healthy Bone
  • Lithium as a Nutrient
  • Does Potassium Deficiency Contribute to Hypertension in Children and Adolescents?
  • Iodine deficiency: Clinical implications.

View by Category

  • Clinical Trials / Studies
  • Elements
  • Journal Publications
  • Open Access
  • Seawater
  • Elements
  • Open Access
  • Journal Publications
  • Clinical Trials / Studies
About Us
About Open Access
For Authors
Our Contributors and Partners
Contact
Privacy
Terms & Conditions

Copyright ©2014 - 2018 Institute of Mineral Research