Institute of Mineral Research

Life Sciences - Health & Wellness

  • Home
  • Open Access
  • Mineral Elements
  • Conditions A-Z
  • Submissions
  • About Us

Effects of silicon on osteoblast activity and bone mineralization of MC3T3-E1 cells.

Biol Trace Elem Res. 2013 Apr;152(1):105-12

Authors: Kim EJ, Bu SY, Sung MK, Choi MK

Abstract
Previous studies have reported that dietary silicon (Si) intake is positively associated with bone health including bone mineral density. Although the amount of Si intake is high among trace elements in humans, how dietary Si affects bone formation at the cellular level is not well addressed. The purpose of this study was to investigate the role of Si in osteoblast activity and bone mineralization. MC3T3-E1 was cultured as mature osteoblasts and treated with sodium metasilicate (0, 1, 5, 10, 25, 50, and 100 μM) as a source of Si. After 7 days of treatment, 5 and 10 μM of sodium metasilicate significantly increased intracellular alkaline phosphatase activity (p < 0.05) when compared to the control. Additionally, all doses of sodium metasilicate (1, 5, 10, 25, 50, and 100 μM) increased mineralized nodule formation at 14 days of differentiation as evidenced by increased Alizarin Red S staining. In the analysis of gene expression, 50 μM of sodium metasilicate upregulated type I collagen (COL-I) compared to the control group. However, the increase of COL-I gene expression as a result of treatment with 1, 10, 25, and 100 μM of sodium metasilicate did not reach statistical significance. mRNA expression of insulin-like growth factor-I and receptor activator of NF-κB ligand was not significantly changed at any dose of sodium metasilicate (0, 1, 5, 10, 25, 50, and 100 μM). In light of the results, we conclude that Si has a positive effect on bone metabolism by enhancing osteoblast mineralization activity.

PMID: 23306944 [PubMed – indexed for MEDLINE]

Related Articles

  • Effects of germanium and silicon on bone mineralization
  • Silicon Biochemistry
  • Soluble silica inhibits osteoclast formation and bone resorption in vitro.

Filed Under: Journal Publications Tagged With: bone, osteoblast, Silica

SEARCH

Silicon Biochemistry

Silicon as an Essential Trace Element in Animal Nutrition
Author: Edith Muriel Carlisle
READ FULL ARTICLE HERE (PDF)

Published in 1899

The Physiological Role of Mineral Nutrients

Author: Loew, Oscar, b. 1844 Volume: no.18 Subject: Plant physiology; Plants Assimilation; Minerals Publisher: Washington : G.P.O. Year: 1899 Possible … Read this book online

Most Recent Posts

  • Update on Nutrients Involved in Maintaining Healthy Bone
  • Lithium as a Nutrient
  • Does Potassium Deficiency Contribute to Hypertension in Children and Adolescents?
  • Iodine deficiency: Clinical implications.

View by Category

  • Clinical Trials / Studies
  • Elements
  • Journal Publications
  • Open Access
  • Seawater
  • Elements
  • Open Access
  • Journal Publications
  • Clinical Trials / Studies
About Us
About Open Access
For Authors
Our Contributors and Partners
Contact
Privacy
Terms & Conditions

Copyright ©2014 - 2018 Institute of Mineral Research